欧美色欧美亚洲另类七区,惠美惠精品网,五月婷婷一区,国产亚洲午夜

課程目錄:Artificial Neural Networks, Machine Learning, Deep Thinking培訓
4401 人關注
(78637/99817)
課程大綱:

          Artificial Neural Networks, Machine Learning, Deep Thinking培訓

 

 

 

DAY 1 - ARTIFICIAL NEURAL NETWORKS
Introduction and ANN Structure.
Biological neurons and artificial neurons.
Model of an ANN.
Activation functions used in ANNs.
Typical classes of network architectures .
Mathematical Foundations and Learning mechanisms.
Re-visiting vector and matrix algebra.
State-space concepts.
Concepts of optimization.
Error-correction learning.
Memory-based learning.
Hebbian learning.
Competitive learning.
Single layer perceptrons.
Structure and learning of perceptrons.
Pattern classifier - introduction and Bayes' classifiers.
Perceptron as a pattern classifier.
Perceptron convergence.
Limitations of a perceptrons.
Feedforward ANN.
Structures of Multi-layer feedforward networks.
Back propagation algorithm.
Back propagation - training and convergence.
Functional approximation with back propagation.
Practical and design issues of back propagation learning.
Radial Basis Function Networks.
Pattern separability and interpolation.
Regularization Theory.
Regularization and RBF networks.
RBF network design and training.
Approximation properties of RBF.
Competitive Learning and Self organizing ANN.
General clustering procedures.
Learning Vector Quantization (LVQ).
Competitive learning algorithms and architectures.
Self organizing feature maps.
Properties of feature maps.
Fuzzy Neural Networks.
Neuro-fuzzy systems.
Background of fuzzy sets and logic.
Design of fuzzy stems.
Design of fuzzy ANNs.
Applications
A few examples of Neural Network applications, their advantages and problems will be discussed.
DAY -2 MACHINE LEARNING
The PAC Learning Framework
Guarantees for finite hypothesis set – consistent case
Guarantees for finite hypothesis set – inconsistent case
Generalities
Deterministic cv. Stochastic scenarios
Bayes error noise
Estimation and approximation errors
Model selection
Radmeacher Complexity and VC – Dimension
Bias - Variance tradeoff
Regularisation
Over-fitting
Validation
Support Vector Machines
Kriging (Gaussian Process regression)
PCA and Kernel PCA
Self Organisation Maps (SOM)
Kernel induced vector space
Mercer Kernels and Kernel - induced similarity metrics
Reinforcement Learning
DAY 3 - DEEP LEARNING
This will be taught in relation to the topics covered on Day 1 and Day 2
Logistic and Softmax Regression
Sparse Autoencoders
Vectorization, PCA and Whitening
Self-Taught Learning
Deep Networks
Linear Decoders
Convolution and Pooling
Sparse Coding
Independent Component Analysis
Canonical Correlation Analysis
Demos and Applications

主站蜘蛛池模板: 汾阳市| 普兰县| 木里| 安乡县| 德兴市| 无棣县| 临武县| 邓州市| 扎赉特旗| 桐庐县| 阳城县| 保靖县| 崇左市| 济阳县| 开江县| 固安县| 友谊县| 十堰市| 保德县| 台前县| 泌阳县| 绥江县| 镇巴县| 崇义县| 阜新市| 南汇区| 松阳县| 新泰市| 渑池县| 三江| 铁岭县| 韶山市| 镇原县| 沽源县| 驻马店市| 萨嘎县| 阳山县| 金沙县| 天等县| 密山市| 敦化市|