欧美色欧美亚洲另类七区,惠美惠精品网,五月婷婷一区,国产亚洲午夜

課程目錄:TensorFlow Lite for Embedded Linux培訓(xùn)
4401 人關(guān)注
(78637/99817)
課程大綱:

  TensorFlow Lite for Embedded Linux培訓(xùn)

 

 

Introduction

TensforFlow Lite's game changing role in embedded systems and IoT
Overview of TensorFlow Lite Features and Operations

Addressing limited device resources
Default and expanded operations
Setting up TensorFlow Lite

Installing the TensorFlow Lite interpreter
Installing other TensorFlow packages
Working from the command line vs Python API
Choosing a Model to Run on a Device

Overview of pre-trained models: image classification, object detection, smart reply, pose estimation, segmentation
Choosing a model from TensorFlow Hub or other source
Customizing a Pre-trained Model

How transfer learning works
Retraining an image classification model
Converting a Model

Understanding the TensorFlow Lite format (size, speed, optimizations, etc.)
Converting a model to the TensorFlow Lite format
Running a Prediction Model

Understanding how the model, interpreter, input data work together
Calling the interpreter from a device
Running data through the model to obtain predictions
Accelerating Model Operations

Understanding on-board acceleration, GPUs, etc.
Configuring Delegates to accelerate operations
Adding Model Operations

Using TensorFlow Select to add operations to a model.
Building a custom version of the interpreter
Using Custom operators to write or port new operations
Optimizing the Model

Understanding the balance of performance, model size, and accuracy
Using the Model Optimization Toolkit to optimize the size and performance of a model
Post-training quantization
Troubleshooting

Summary and Conclusion

主站蜘蛛池模板: 张家川| 霸州市| 镇江市| 克山县| 丹巴县| 施甸县| 乐陵市| 兴城市| 光山县| 明水县| 唐河县| 江山市| 任丘市| 左贡县| 红原县| 西乡县| 汉川市| 陆丰市| 方正县| 忻城县| 扎囊县| 九寨沟县| 淮安市| 陕西省| 安康市| 大悟县| 东兴市| 伊金霍洛旗| 奎屯市| 宜兰市| 微博| 夹江县| 灵璧县| 永春县| 三明市| 泰州市| 泗水县| 柏乡县| 金坛市| 永年县| 嘉义县|