欧美色欧美亚洲另类七区,惠美惠精品网,五月婷婷一区,国产亚洲午夜

課程目錄:R語(yǔ)言機(jī)器學(xué)習(xí)學(xué)術(shù)應(yīng)用培訓(xùn)
4401 人關(guān)注
(78637/99817)
課程大綱:

          R語(yǔ)言機(jī)器學(xué)習(xí)學(xué)術(shù)應(yīng)用培訓(xùn)

 

 

 

R語(yǔ)言機(jī)器學(xué)習(xí)學(xué)術(shù)應(yīng)用
基礎(chǔ)
Theory: Features of time series data and forecasting basics

R Lab: time series objects (libraries of timeSeries, xts, & mFilters)

中級(jí)
Statistical Learning (SL):

(0.5 Hour) One-step forecasting: one-step ahead model fit

(0.5 Hour) Multi-step forecasting: recursive and direct methods

(6 Hours) Linear models: ARIMAs, ETS, BATS, GAMS, Bagged; 案例實(shí)做與寫作范例

(5 hours) Nonlinear models: Neural Network, Smooth Transition, and AAR; 案例實(shí)做與寫作范例

R Lab: libraries of forecast, tyDyn, vars, and MSVAR.

Research Issues: unemployment forecasting, predictability of exchange rates and asset returns.

高級(jí)
Machine Learning (ML):

(3 Hours) Tree models and SVM (Support Vector Machine)

(6 Hours) Automatic ML for forecasting time series; 案例實(shí)做與寫作范例,涵蓋自動(dòng)化演算6個(gè)機(jī)器學(xué)習(xí)方法:

(1) DRF (This includes both the Random Forest and Extremely Randomized Trees (XRT) models.)

(2) GLM

(3) XGBoost (XGBoost GBM)

(4) GBM (gradient boost machine)

(5) DeepLearning (Fully-connected multi-layer artificial neural network, not CNN/RNN LSTM)

(6) StackedEnsemble.

(6 Hours) Econometric machine learning- Causality by ML prediction; 案例實(shí)做與寫作范例

(3 Hours) Financial machine learning- Portfolio committees introduced; 案例實(shí)做與寫作范例

R Lab: libraries of h2o, kera, tensorflow.

Research issues: Granger causality, volatility forecasting, portfolio selection,

economic fundamentals of exchange rates

主站蜘蛛池模板: 洪洞县| 广平县| 手游| 福建省| 高密市| 沈丘县| 丽水市| 澳门| 武清区| 巴里| 徐闻县| 仙桃市| 田东县| 霍州市| 云浮市| 东乌珠穆沁旗| 勃利县| 闵行区| 夏河县| 靖江市| 全椒县| 佛学| 正宁县| 大田县| 绥芬河市| 平湖市| 三河市| 杭锦旗| 万宁市| 孙吴县| 师宗县| 崇仁县| 南召县| 米脂县| 纳雍县| 泸定县| 平邑县| 郸城县| 广河县| 鄂温| 阳江市|