欧美色欧美亚洲另类七区,惠美惠精品网,五月婷婷一区,国产亚洲午夜

曙海教育集團(tuán)
全國報(bào)名免費(fèi)熱線:4008699035 微信:shuhaipeixun
或15921673576(微信同號(hào)) QQ:1299983702
首頁 課程表 在線聊 報(bào)名 講師 品牌 QQ聊 活動(dòng) 就業(yè)
 
OpenNMT: Setting Up a Neural Machine Translation System培訓(xùn)
 
   班級(jí)人數(shù)--熱線:4008699035 手機(jī):15921673576( 微信同號(hào))
      增加互動(dòng)環(huán)節(jié), 保障培訓(xùn)效果,堅(jiān)持小班授課,每個(gè)班級(jí)的人數(shù)限3到5人,超過限定人數(shù),安排到下一期進(jìn)行學(xué)習(xí)。
   授課地點(diǎn)及時(shí)間
上課地點(diǎn):【上海】:同濟(jì)大學(xué)(滬西)/新城金郡商務(wù)樓(11號(hào)線白銀路站) 【深圳分部】:電影大廈(地鐵一號(hào)線大劇院站)/深圳大學(xué)成教院 【北京分部】:北京中山學(xué)院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領(lǐng)館區(qū)1號(hào)(中和大道) 【廣州分部】:廣糧大廈 【西安分部】:協(xié)同大廈 【沈陽分部】:沈陽理工大學(xué)/六宅臻品 【鄭州分部】:鄭州大學(xué)/錦華大廈 【石家莊分部】:河北科技大學(xué)/瑞景大廈
開班時(shí)間(連續(xù)班/晚班/周末班):2020年3月16日
   課時(shí)
     ◆資深工程師授課
        
        ☆注重質(zhì)量 ☆邊講邊練

        ☆若學(xué)員成績(jī)達(dá)到合格及以上水平,將獲得免費(fèi)推薦工作的機(jī)會(huì)
        ★查看實(shí)驗(yàn)設(shè)備詳情,請(qǐng)點(diǎn)擊此處★
   質(zhì)量以及保障

      ☆ 1、如有部分內(nèi)容理解不透或消化不好,可免費(fèi)在以后培訓(xùn)班中重聽;
      ☆ 2、在課程結(jié)束之后,授課老師會(huì)留給學(xué)員手機(jī)和E-mail,免費(fèi)提供半年的課程技術(shù)支持,以便保證培訓(xùn)后的繼續(xù)消化;
      ☆3、合格的學(xué)員可享受免費(fèi)推薦就業(yè)機(jī)會(huì)。
      ☆4、合格學(xué)員免費(fèi)頒發(fā)相關(guān)工程師等資格證書,提升您的職業(yè)資質(zhì)。

課程大綱
 
  • Machine learning
    Introduction to Machine Learning
  • Applications of machine learning
    Supervised Versus Unsupervised Learning
    Machine Learning Algorithms
    Regression
    Classification
    Clustering
    Recommender System
    Anomaly Detection
    Reinforcement Learning
    Regression
  • Simple & Multiple Regression
    Least Square Method
    Estimating the Coefficients
    Assessing the Accuracy of the Coefficient Estimates
    Assessing the Accuracy of the Model
    Post Estimation Analysis
    Other Considerations in the Regression Models
    Qualitative Predictors
    Extensions of the Linear Models
    Potential Problems
    Bias-variance trade off [under-fitting/over-fitting] for regression models
    Resampling Methods
  • Cross-Validation
    The Validation Set Approach
    Leave-One-Out Cross-Validation
    k-Fold Cross-Validation
    Bias-Variance Trade-Off for k-Fold
    The Bootstrap
    Model Selection and Regularization
  • Subset Selection [Best Subset Selection, Stepwise Selection, Choosing the Optimal Model]
    Shrinkage Methods/ Regularization [Ridge Regression, Lasso & Elastic Net]
    Selecting the Tuning Parameter
    Dimension Reduction Methods
    Principal Components Regression
    Partial Least Squares
    Classification
  • Logistic Regression
  • The Logistic Model cost function
  • Estimating the Coefficients
  • Making Predictions
  • Odds Ratio
  • Performance Evaluation Matrices
  • [Sensitivity/Specificity/PPV/NPV, Precision, ROC curve etc.]
  • Multiple Logistic Regression
  • Logistic Regression for >2 Response Classes
  • Regularized Logistic Regression
  • Linear Discriminant Analysis
  • Using Bayes’ Theorem for Classification
  • Linear Discriminant Analysis for p=1
  • Linear Discriminant Analysis for p >1
  • Quadratic Discriminant Analysis
  • K-Nearest Neighbors
  • Classification with Non-linear Decision Boundaries
  • Support Vector Machines
  • Optimization Objective
  • The Maximal Margin Classifier
  • Kernels
  • One-Versus-One Classification
  • One-Versus-All Classification
  • Comparison of Classification Methods
  • Introduction to Deep Learning
    ANN Structure
  • Biological neurons and artificial neurons
  • Non-linear Hypothesis
  • Model Representation
  • Examples & Intuitions
  • Transfer Function/ Activation Functions
  • Typical classes of network architectures
  • Feed forward ANN.
  • Structures of Multi-layer feed forward networks
  • Back propagation algorithm
  • Back propagation - training and convergence
  • Functional approximation with back propagation
  • Practical and design issues of back propagation learning
  • Deep Learning
  • Artificial Intelligence & Deep Learning
  • Softmax Regression
  • Self-Taught Learning
  • Deep Networks
  • Demos and Applications
  • Lab:
    Getting Started with R
  • Introduction to R
  • Basic Commands & Libraries
  • Data Manipulation
  • Importing & Exporting data
  • Graphical and Numerical Summaries
  • Writing functions
  • Regression
  • Simple & Multiple Linear Regression
  • Interaction Terms
  • Non-linear Transformations
  • Dummy variable regression
  • Cross-Validation and the Bootstrap
  • Subset selection methods
  • Penalization [Ridge, Lasso, Elastic Net]
  • Classification
  • Logistic Regression, LDA, QDA, and KNN,
  • Resampling & Regularization
  • Support Vector Machine
  • Resampling & Regularization
  • Note:
  • For ML algorithms, case studies will be used to discuss their application, advantages & potential issues.
  • Analysis of different data sets will be performed using R
 
 
  備案號(hào):備案號(hào):滬ICP備08026168號(hào)-1 .(2024年07月24日)....................
友情鏈接:Cadence培訓(xùn) ICEPAK培訓(xùn) PCB設(shè)計(jì)培訓(xùn) adams培訓(xùn) fluent培訓(xùn)系列課程 培訓(xùn)機(jī)構(gòu)課程短期培訓(xùn)系列課程培訓(xùn)機(jī)構(gòu) 長(zhǎng)期課程列表實(shí)踐課程高級(jí)課程學(xué)校培訓(xùn)機(jī)構(gòu)周末班培訓(xùn) 南京 NS3培訓(xùn) OpenGL培訓(xùn) FPGA培訓(xùn) PCIE培訓(xùn) MTK培訓(xùn) Cortex訓(xùn) Arduino培訓(xùn) 單片機(jī)培訓(xùn) EMC培訓(xùn) 信號(hào)完整性培訓(xùn) 電源設(shè)計(jì)培訓(xùn) 電機(jī)控制培訓(xùn) LabVIEW培訓(xùn) OPENCV培訓(xùn) 集成電路培訓(xùn) UVM驗(yàn)證培訓(xùn) VxWorks培訓(xùn) CST培訓(xùn) PLC培訓(xùn) Python培訓(xùn) ANSYS培訓(xùn) VB語言培訓(xùn) HFSS培訓(xùn) SAS培訓(xùn) Ansys培訓(xùn) 短期培訓(xùn)系列課程培訓(xùn)機(jī)構(gòu) 長(zhǎng)期課程列表實(shí)踐課程高級(jí)課程學(xué)校培訓(xùn)機(jī)構(gòu)周末班 端海 教育 企業(yè) 學(xué)院 培訓(xùn)課程 系列班 級(jí) 長(zhǎng)期課程列表實(shí)踐課程高級(jí)課程學(xué)校培訓(xùn)機(jī)構(gòu)周末班 短期培訓(xùn)系列課程培訓(xùn)機(jī)構(gòu) 端海教育企業(yè)學(xué)院培訓(xùn)課程 系列班級(jí)
主站蜘蛛池模板: 渝北区| 高州市| 丘北县| 镇平县| 华阴市| 安宁市| 姜堰市| 大石桥市| 顺义区| 尼勒克县| 个旧市| 五寨县| 肥西县| 东乌珠穆沁旗| 德昌县| 兴国县| 尉犁县| 新丰县| 景东| 武穴市| 府谷县| 伊金霍洛旗| 社旗县| 泸州市| 资中县| 通山县| 偏关县| 自治县| 兴仁县| 微山县| 金门县| 磴口县| 南京市| 宁夏| 孝感市| 东光县| 海丰县| 泰来县| 汉源县| 贵定县| 陆丰市|